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Abstract

The steady close-contact melting phenomenon occurring between a phase change material and an isothermally heated ¯at surface

in relative motion is investigated analytically, with the e�ects of transverse convection across the liquid ®lm and solid±liquid density

di�erence taken into account. Scale analysis is used to estimate the dependence of system variables on characteristic parameters.

Also, an analytical solution to a set of simpli®ed model equations is obtained to quantify the e�ects. Transverse convection can

be characterized by a dimensionless interfacial temperature gradient which asymptotically approaches unity/zero with decreasing/

increasing the Stefan number. The convection e�ect in the liquid ®lm can be neglected approximately for the range of the Stefan

number less than 0.1. It is found that the solid descending velocity depends linearly on the liquid-to-solid density ratio, and that

the ratios of solid descending velocity, ®lm thickness and friction coe�cient to the conduction solution are proportional to 3/4,

1/4 and )1/4 powers of the interfacial temperature gradient, respectively. Ó 1998 Published by Elsevier Science Inc. All rights re-

served.
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1. Introduction

Contact melting is related to diverse applications such as la-
tent heat storage using encapsulated phase change materials,
melt lubrication by the surface coating of a metallic part with
a low melting point material, interior ballistics associated with
super®cial melting of a projectile traveling along a gun barrel,
and burial of heat-generating bodies.
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Notation

c speci®c heat
f friction coe�cient, Ft=Fn

Fn normal force, Fig. 1
~Fn dimensionless normal force, FnL=�la�
Ft tangential force, Fig. 1
hsf latent heat of fusion
k thermal conductivity
L sliding-contact length
P pressure
DP longitudinal pressure di�erence
Ste Stefan number, cDT=hsf

T temperature
Tm melting point of phase change material
DT transverse temperature di�erence
DTx longitudinal temperature di�erence
u; v velocity components, Fig. 1
U velocity of relative motion
~U dimensionless velocity of relative motion, UL=a
V solid descending velocity
~V dimensionless solid descending velocity, VL=a
x; y Cartesian coordinates, Fig. 1

z variable standing for ~qÿ1 ~V ~d

Greek
a thermal di�usivity, k=�qlc�
d thickness of the liquid ®lm
~d dimensionless thickness of the liquid ®lm, d=L
f dummy variable
g dimensionless vertical position, y=d
l viscosity
q density
~q liquid-to-solid density ratio, ql=qs
h dimensionless temperature, �T ÿ Tm�=DT
/ dimensionless interfacial temperature gradient,

Eq. (28)

Subscripts
cond conduction solution
l liquid phase
s solid phase
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Recently, Bejan (1994) presented a comprehensive review
on contact melting. Of special interest to the present study is
the analytical modeling of close-contact melting occurring be-
tween a phase change material and a heated surface. In most of
the previous modelings, it has been assumed that conduction
normal to the surface, i.e. transverse (or crosswise) conduction,
is the only heat transport mechanism in the liquid ®lm formed
between the two solids. However, the assumption seems to be
valid only when the Stefan number is su�ciently small. This
argument can be substantiated by the work of Hong and Saito
(1993), which numerically simulated the transient behavior
from the beginning to the steady-state of close-contact melting
on an isothermal ¯at surface with a sophisticated model ac-
counting for full convection. At the steady-state, both the ®lm
thickness and the solid descending velocity for Ste� 0.01266
agree well with the existing conduction solution, whereas those
for Ste� 1.266 considerably underpredict the conduction solu-
tion. The discrepancy for the latter case was merely attributed
to the e�ect of convection in the liquid ®lm, but a de®nite ver-
i®cation has not been presented since then.

The solid±liquid density di�erence of phase change material
in close-contact melting has been recognized as a driving force
to keep contact between melting and heated solids by gravity
in the absence of external force, e.g. Bareiss and Beer (1984).
On the other hand, its e�ect on ¯uid mechanics in the liquid
®lm has been inattentively treated in spite of the physical real-
ity. Since the liquid ¯owing through the gap between two sol-
ids is actually generated by melting at the solid±liquid
interface, the melting rate as well as the density di�erence must
a�ect the volume ¯ow rate and pressure in the ®lm. In this re-
gard, the role played by the density di�erence in close-contact
melting needs to be assessed.

The present study is intended to clarify the e�ects of con-
vection in the liquid ®lm and solid±liquid density di�erence
of phase change material in a representative steady close-con-
tact melting process. In association with melt lubrication, the
frictional characteristics resulting from relative (tangential)
motion between two solid parts are also included in the model.
First, scale analysis is performed not only to assure the simpli-
®cation introduced in the modeling procedure, but also to de-
rive qualitative relations between the system variables and
relevant parameters. Then, an analytical solution to the simpli-
®ed model equations is pursued to quantify the results. The ef-
fects of density di�erence and transverse convection are to be
represented in terms of the liquid-to-solid density ratio and a
dimensionless interfacial temperature gradient, respectively.
In particular, the speci®c e�ects of transverse convection on
the system variables are highlighted by examining the behavior
of the interfacial temperature gradient and by comparing the
present results with the conduction solution.

2. Model description

The physical system considered in this work, as depicted
schematically in Fig. 1, is a simple one among various geomet-
ric con®gurations of contact melting. This system seems to be
convenient for explaining the principles of close-contact melt-
ing and lubrication (Bejan, 1989, 1995) in the presence of con-
vection and solid±liquid density di�erence, and can be readily
extended to even more general cases (Bejan, 1992).

A block of solid-state phase change material at its melting
point Tm melts quasi-steadily on the ¯at surface which is heated
isothermally at a prescribed temperature Tm � DT . Contact be-
tween two solids over the length L is maintained by the exter-
nally applied force Fn. During the contact melting process, the
liquid melt created at a constant rate along the solid±liquid in-
terface ®lls the gap, ¯ows toward the ends, and eventually is

squeezed out through the end openings. Since the liquid ®lm
thickness is invariant at the steady-state, the vertical (descend-
ing) velocity of solid block must coincide with the melting rate
at the interface. Both the liquid ®lm thickness d and the solid
descending velocity V are the target unknowns to be deter-
mined. In addition, when one of the solid parts moves at a
known velocity U relative to the other, the tangential force
Ft supporting the stationary part is another important variable
pertaining to lubrication. Note that the present coordinate sys-
tem ®xed at one end of the stationary part (see Fig. 1) can also
be applied to analyze the case that both parts are in motion by
simply adjusting the relative velocity between them.

A brief description of the fundamental features involved in
contact melting process is useful for understanding the global
picture of the present problem. Inside the thin liquid ®lm, the
vertically downward ¯ow developed by the simultaneous ac-
tions of melting and solid descending motion has the maxi-
mum velocity at the melting front, gradually diminishes as it
travels across the ®lm, and ®nally vanishes on the heated sur-
face on account of ¯ow turning toward the openings. Crossing
the gap, the temperature changes from the melting point to the
surface temperature. At low melting rates, the linear tempera-
ture pro®le across the ®lm corresponding to the conduction so-
lution is nearly una�ected by crosswise convection. At higher
rates, however, the melt ejected vigorously from the melting
front cools down the temperature locally, reducing the interfa-
cial temperature gradient. This statement is consistent with the
previous work (Hong and Saito, 1993), in that the solid de-
scending velocity predicted numerically is considerably smaller
than that from the conduction solution. In regard of the e�ect
of density di�erence, it has been re¯ected in the existing con-
duction solution in terms of the liquid-to-solid density ratio
(Bejan, 1992, 1995). There still remains a question as to wheth-
er the density di�erence interacts with the transverse convec-
tion or not. No analytical model that simultaneously
accounts for convection and density di�erence has been pre-
sented yet. It is important not only to quantify the e�ects of
transverse convection and density di�erence, but also to estab-
lish the criterion to include either of them in the analysis.

In order to render the problem mathematically tractable,
the following assumptions have been introduced:

Fig. 1. Schematic of the contact-melting system considered in the pres-

ent study.
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(a) The process is quasi-steady, as already noted, so that at
every moment of the process the normal force exerted on the
solid block is balanced by the pressure of the liquid ®lm. The
unsteady behavior expected during the initial stage of contact
melting (Hong and Saito, 1993) is percluded here.

(b) The ®lm thickness is uniform in the direction tangent to
the heated surface, which implies that the e�ect of longitudinal
(horizontal) convection is negligible, even when that of trans-
verse (vertical) convection is appreciable. The validity of this
assumption will be discussed later.

(c) The velocity of relative motion U is so imposed that the
e�ect of viscous dissipation (frictional heating) can be neglect-
ed. This assumption has been employed commonly in the pre-
vious models (Bejan, 1995), except the case that the viscous
dissipation is the only heat source for melting when the veloc-
ity is high (Bejan, 1989).

3. Analysis

3.1. Model equations

Two of the system variables, i.e. the ®lm thickness d and the
solid descending velocity V , can be determined simultaneously
by the vertical force balance on the melting block,

Fn �
ZL

0

P �x� dx �1�

and the energy balance at the melting front,

ÿ k
oT
oy

����
y�d

� qshsf V �2�

The horizontal force balance relates the unknown tangential
force Ft with the shear force acting on the heated surface,

Ft � ÿ
ZL

0

l
ou
oy

� �
y�0

dx �3�

In Eqs. (1)±(3), the pressure distribution in the liquid ®lm,
the temperature gradient at the interface and the velocity gra-
dient at the heated surface should be expressed in terms of the
dependent variables (i.e. V ; d and Ft) for the closure of model-
ing. This can be done by solving the continuity, momentum
and energy equations for the ®lm. The continuity equation is
expressed as

ou
ox
� ov

oy
� 0: �4�

According to the classical theory of lubrication (Bejan, 1989;
Batchelor, 1967), the liquid inertia and the pressure variation
in the transverse direction (y) are negligible, yielding a simpli-
®ed momentum equation,

dP
dx
� l

o2u
oy2

: �5�

Relying on the assumption (c) and neglecting the longitudinal
heat conduction, the energy equation reduces to

u
oT
ox
� v

oT
oy
� a

o2T
oy2

: �6�

Note that Eq. (6) still retains the convection terms which have
been excluded in the conduction models (Bejan,
1989, 1994, 1995). The energy equation admits further simpli-
®cation, which is described below.

3.2. Scale analysis

Order-of-magnitude of convection terms in the energy
equation is estimated ®rst. In the previous study (Bejan,
1995), the terms in Eq. (6) were scaled as U DT=L; V DT=d
and a DT=d2. Scaling Eq. (4), i.e.

U=L � V =d; �7�
yields the following order-of-magnitude relation from the ener-
gy equation,

U DT=L � V DT=d: �8�
Eq. (8) indicates that the transverse and longitudinal convec-
tions are of the same order. On the basis of this relation and
the assumption that the order of convection-to-conduction ra-
tio is su�ciently small (i.e. V d=a� 1), the convection terms
were excluded in the conduction models.

The scaling relation, Eq. (8), does not pose any problem if
the above assumption is valid. If not, both of the convection
terms in Eq. (6) should be included in the analysis. Such a po-
tentially complicated approach can be circumvented, however.
The numerical simulation for Ste� 1.266 (the relation,
V d=a � Ste, will be identi®ed later) in Hong and Saito (1993)
shows that the ®lm thickness remains nearly uniform in the
horizontal direction (within 0.1% of relative variation), while
deviating considerably from the conduction solution. This im-
plies that only the crosswise convection a�ects the temperature
distribution in the ®lm, since the ®lm thickness depends direct-
ly on the local temperature gradient at the melting front. Apart
from the numerical evidence, it is physically plausible that the
temperature di�erence in each direction is of distinct order.
Considering that ¯ow through the liquid ®lm is laminar, and
that both boundaries, i.e. the solid±liquid interface and the
heated surface, are kept isothermal, the longitudinal tempera-
ture di�erence must be much smaller than the transverse coun-
terpart. If this is the case, the scaling relation for convection
terms, Eq. (8), should be replaced by

U DTx=L� V DT=d; �9�
where DTx denotes a newly estimated longitudinal temperature
di�erence. Relying on Eq. (9), Eq. (6) is further simpli®ed as

v
dT
dy
� a

d2T
dy2

�10�
which is valid even when V d=a � 1. The foregoing discussion
seems to su�ce to validate the assumption (b) described earli-
er.

From now on, the focus is placed on the characteristics of
contact melting in the simultaneous presence of crosswise con-
vection and solid±liquid density di�erence. Scaling Eqs. (4)
and (5) gives:

U=L � �qs=ql�V =d; �11�

DP=L � lU=d2; �12�
respectively. Note that the scale of vertical liquid velocity in
Eq. (11) is taken as (qs=ql�V instead of V in order to incorpo-
rate the e�ect of density di�erence. Substituting Eqs. (11) and
(12) into Eq. (1), we have the following relation,

Fn � LDP � l�qs=ql�VL3=d3: �13�
The order-of-magnitude relation corresponding to Eq. (2) can
be expressed as

kDT=d � / � qshsf V ; �14�
where the term /, which is de®ned later, is a dimensionless
temperature gradient at the interface. It physically represents
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the degree of change in the temperature gradient of pure con-
duction, kDT=d, due to crosswise convection.

From Eqs. (13) and (14), with the aid of the de®nitions of
dimensionless quantities, the dependent variables are ®nally
scaled as

~V � ~q�Ste � /�3=4 ~F 1=4
n ; �15�

~d � �Ste � /�1=4 ~F ÿ1=4
n : �16�

Three observations can be made from these results. First, the
transverse convection a�ects both the solid descending velocity
~V and the liquid ®lm thickness ~d in the consolidated form with
the Stefan number, i.e. Ste � /. Second, the density ratio ~q al-
ters ~V only, provided / is not a function of ~q. Finally,
Eqs. (15) and (16) reduce to the existing conduction solutions
without density di�erence (Bejan, 1992; Bejan, 1995) when
/ � 1 and ~q � 1. Moreover, it can be asserted at this stage that
an uncertainty regarding the density ratio found in Bejan
(1992), speci®cally ~q3=4 in place of ~q in Eq. (15), originated
from the use of Eq. (7) instead of Eq. (11) there.

3.3. Analytical solution

In order to obtain quantitative informations, an analytical
solution is sought for a set of simpli®ed model Eqs. (1)±(5)
and (10). The ¯uid mechanics part of the analysis is quite
straightforward, as in the previous studies (Bejan,
1989, 1995). Eq. (5) subject to no-slip boundary conditions,

u � 0 at y � 0 and d �17�
is solved to yield the parabolic velocity pro®le in the ®lm,

u�x; y� � d2

2l
dP
dx

� �
�g2 ÿ g� � U�1ÿ g�: �18�

Integration of Eq. (4) across the ®lm using Eq. (18) and the
boundary conditions for v,

v � 0 at y � 0 and v � ÿ�qs=ql�V at y � d; �19�
gives

d3

12l
ÿ d2P

dx2

� �
� qs

ql

� �
V : �20�

It is easy to integrate Eq. (20) subject to the end conditions
(P� 0 at x� 0 and L) with respect to x,

P�x� � 6l�qs=ql� V =d3
ÿ �

Lxÿ x2
ÿ �

: �21�
The known pressure distribution along the ®lm facilitates the
integration appeared in Eq. (1), which allows the force balance
on the solid block to be expressed in dimensionless form as

~Fn � ~qÿ1 ~V ~dÿ3: �22�
The vertical velocity pro®le v�y�, which is prerequisite to de-

riving the temperature distribution across the ®lm, is readily
obtained. By substituting Eq. (18) into Eq. (4), we have a dif-
ferential equation for v�y�,
ov
oy
� ÿ d2

2l
d2P
dx2

� �
g2 ÿ g
ÿ �

; �23�

the solution of which is

v�y� � �qs=ql�V 2g3 ÿ 3g2
ÿ �

: �24�
Note that the above pro®le satis®es the boundary conditions,
Eq. (19). Thus the energy equation, Eq. (10), subject to the
boundary conditions,

T � Tm � DT at y � 0 and T � Tm at y � d �25�

is ready to be solved. The solution, the temperature distribu-
tion across the ®lm, can be written as

h � 1ÿ
Zg

0

e~qÿ1 ~V ~d f4=2ÿf3� � df

,Z1
0

e~qÿ1 ~V ~d f4=2ÿf3� � df; �26�

where f is a dummy variable for integration.
Since the temperature gradient at the melting front can be

obtained from Eq. (26), Eq. (2) simply reduces to

~qÿ1 ~V ~d � Ste � /; �27�
where the dimensionless interfacial temperature gradient / is
de®ned by

/ � ÿdh
dg

����
g�1

� eÿ~qÿ1 ~V ~d=2
.Z1

0

e~qÿ1 ~V ~d f4=2ÿf3� � df: �28�

An apparent dependence of / on the density ratio ~q fades
away by introducing a supplementary variable z � ~qÿ1 ~V ~d;
and by rearranging Eq. (27) into

z � ez=2

Z1
0

ez f4=2ÿf3� � df � Ste: �29�

Note that the variable z is a function of Ste only. If z is known
for a prescribed Ste as a solution of Eq. (29), the term / is de-
termined from Eq. (27), i.e. / � z=Ste. Eq. (29) is readily
solved, e.g. via the Newton±Raphson method, since the LHS
of it is a monotonically increasing function of z. In conse-
quence, / is also a function of Ste only. This fact indicates
that the e�ect of transverse convection and density di�erence
are mutually independent, being characterized by the inter-
facial temperature gradient and the density ratio, respectively,
Finally, Eqs. (22) and (27) are solved to yield

~V � ~q�Ste � /�3=4 ~F 1=4
n ; �30�

~d � �Ste � /�1=4 ~F ÿ1=4
n : �31�

These results are consistent with those of scale analysis, except
that / is speci®ed here.

The tangential force is conveniently represented by the fric-
tion coe�cient de®ned as f � Ft=Fn (Bejan, 1989; Bejan, 1995).
Applying the velocity pro®le, Eq. (18), to the horizontal force
balance, Eq. (3), we have Ft � lUL=d, thereby

f � ~U�Ste � /�ÿ1=4 ~F ÿ3=4
n : �32�

The friction coe�cient f , which depends on the crosswise con-
vection only (regardless of the density di�erence), also reduces
to the conduction solution (Bejan, 1989, 1995) when / � 1, in
the same manner as ~V and ~d.

4. Discussion

Recalling that the interfacial temperature gradient / is a
function of Ste only, the ®nal results, Eqs. (30)±(32), show that
only the density di�erence a�ects the solid descending velocity.
That is, the velocity ~V depends linearly on the ratio ~q. This can
be interpreted physically as follows. Consider the contact melt-
ing process of a typical phase change material with ~q < 1, i.e.
the solid phase is denser than the liquid phase. In such a situ-
ation, the excess liquid is generated along the solid±liquid in-
terface compared with the case of ~q � 1, resulting in the rise
of pressure in the ®lm the thickness of which is kept constant.
The pressure rise, in turn, causes the solid descending velocity
to decrease to meet the force balance on the block for a con-
stant normal force applied externally.

H. Yoo et al. / Int. J. Heat and Fluid Flow 19 (1998) 368±373 371



Since the quantitative e�ect of transverse convection is rep-
resented by /, it is meaningful to investigate the behavior of
/(Ste) in advance. Physically, / � 1 corresponds to pure con-
duction, and / is expected to decrease with intensifying the
transverse convection. Fig. 2 depicts the calculated /(Ste), in
which the range of large Ste is included merely to illustrate
the limiting behavior, although such conditions cannot be real-
ized. It is no surprise that the term asymptotically approaches
unity/zero with decreasing/increasing the Stefan number.

In order to visualize the variation of temperature gradient
with respect to Ste, temperature pro®les for a number of select-
ed cases are shown Fig. 3. With increasing the Stefan number,
the downward convective ¯ow starting at the solid±liquid in-
terface intensi®es, so that the temperature pro®le across the
®lm tends to deviate from the straight line corresponding to
pure conduction, especially in the vicinity of the interface. A
signi®cant result of this work is to show the importance of con-
vection.

Before discussing the e�ect of transverse convection, its
scale is estimated. According to scale analysis, the ratio of
transverse convection to conduction is of order of
�qs=ql�V d=a in the presence of density di�erence, which is
equal to the LHS of Eq. (27) in dimensionless form. In fact,
the consolidated factor Ste � / denotes the scale of convec-
tion-to-conduction ratio. Note here that the aforementioned
relation V d=a � Ste is valid owing to /(Ste) even in the

presence of density di�erence. Fig. 4 shows variation of the ra-
tio Ste � / within the physically meaningful range of Ste. It is
natural that the e�ect of transverse convection becomes signi-
®cant with increasing Ste. Approximately for Ste > 1:1, the
contribution of convection appears to predominate over that
of conduction, which, however, does not necessarily re¯ect
the physical reality. The convection-to-conduction ratio repre-
sented by the curve in Fig. 4 should be understood in an order-
of-magnitude sense.

It is convenient to express the quantitative e�ect of trans-
verse convection by the ratio of the present solution,
Eqs. (30)±(32), to the corresponding conduction solution
�/ � 1� under the same melting conditions. The ratio of each
system variable is simply expressed as

V =Vcond � /3=4; �33�

d=dcond � /1=4; �34�

f =fcond � /ÿ1=4; �35�
respectively. All of them are functions of the interfacial tem-
perature gradient / only, and are plotted in Fig. 5 for the same

Fig. 3. Temperature pro®les across the liquid ®lm at di�erent Stefan

numbers.

Fig. 4. Variation in the order-of-magnitude ratio of transverse convec-

tion to conduction with respect to the Stefan number.

Fig. 5. E�ect of transverse convection on the system variables as a

function of the Stefan number.

Fig. 2. Asymptotic behaviors of the dimensionless interfacial tempera-

ture gradient as a function of the Stefan number.
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range of Ste with Fig. 4. As the crosswise convection intensi-
®es, both the solid descending velocity and the ®lm thickness
decrease, but the friction coe�cient increases, in comparison
with the conduction solution. Due to the asymptotic behavior
of /, the ratios keep nearly constant, i.e. unity, approximately
for the range of Ste < 0:1, where the conduction solution is
valid within a tolerance. Outside the range, however, the ratios
deviate appreciably from unity depending on the exponent.
These results substantiate that the key reason for underpredic-
tions in both the solid descending velocity and the ®lm thick-
ness compared with the pure conduction solution for
Ste � 1:266 in the previous work (Hong and Saito, 1993) is
the e�ect of transverse convection.
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